If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4k^2-9k+5=0
a = 4; b = -9; c = +5;
Δ = b2-4ac
Δ = -92-4·4·5
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-1}{2*4}=\frac{8}{8} =1 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+1}{2*4}=\frac{10}{8} =1+1/4 $
| x+116=90 | | 10x25-35+x=35C | | 46=-5(n+7)+7(5n+3) | | 4=5n−1 | | 6p+63=328 | | 7.y=28 | | 3v+5+v=9 | | 2(2n-5)=90 | | x2-6x+5=0. | | x+8/x+9=4/5 | | -12=3-2k-3=0 | | -7(2m-1)=-105 | | 2(5-3x)=2(5x+4) | | 8x-1=6x-23 | | x=63=180 | | 105=x+2x2 | | 9x-(5x+9)=23 | | 3(x-4)+5=12(x+2) | | 2x+40+4x+8=130 | | ∠B=2x+21∘ | | x/x/5-6=-11 | | 5x-(x+4)=11 | | 2/3x+10=5x+36/5 | | 2/3x+10=36/5 | | k^2-35=0 | | 2x-19=-57 | | 120=-3(6v+2) | | 4x-16=-88 | | 6-4(3x-2)=22 | | 3x/4-5x/8=-1/2 | | -5(x-5)=2(-4x+5)+6 | | x-3=1363647747 |